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Active Set Methods for Nonlinear Programming (NLP)
Nonlinear Program (NLP)

minimize f(x) subject to c(x) =0, x >0

where f, ¢ twice continuously differentiable

Definition (Active Set)
Active set:  A(x) ={i | x; =0}
Inactive set:  Z(x) ={1,...,n} — A(x)

For known optimal active set A(x*), just use Newton's method

Goal: develop robust, fast, parallelizable active-set methods



Active Set Methods for Nonlinear Programming (NLP)

Motivation: mixed-integer nonlinear optimization: x; € {0,1}
@ solve NLP relaxation x; € [0, 1]
@ branch on %; ¢ {0,1} ... two new NLPs: x; =0 or x; =1

@ solve sequence of closely related NLPs
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Branch-and-bound solves millions of related NLPs ...

a 3/27



N
Active-Set vs. Interior-Point Solvers in MINLP
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MINOTAUR with FilterSQP vs IPOPT: CPU time V> 0&9

o FilterSQP warm-starts much faster than IPOPT
@ similar results for BONMIN (IBM/CMU) solver

It’s only half bull



Outline

© Scalable Active-Set Methods for Nonlinear Optimization

© Augmented Lagrangian Filter Method

© Outline of Convergence Proof

@ Outlook and Conclusions
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Two-Phase Active-Set Framework for NLP
NLP: minimize f(x) subject to c¢(x) =0, x >0

repeat
@ Compute cheap first-order step x(K) + s, e.g. LP/QP solve
@ Predict active set from s: A(x(K) + 5) & T(x(¥) + s)
© Compute second-order EQP step on active set:

Hi A | (Ax\
[AkT ] <Ay> =.. Newton step

where Hy = V2L and A, = [Vc(W 1 [(0] active c/s
@ Enforce global convergence & set k + k+1
until optimal solution found

(Fletcher & de la Maza:89), (Gould & Robinson:10), (Fletcher:11)

Toward scalable nonlinear optimization
= replace LP/QP ... avoid pivoting, i.e. rank-one matrix updates
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Augmented Lagrangian Methods (LANCELOT)

Y Augmented Lagrangian:

~—= Ly = f(x) =y e(x) + §le(x)I3
With sequences wy 0 and 7, \, 0

repeat
@ Find wy optimal solution (K1) of mini>naize Lp(x,y(k))
XZ

@ if ||c(RD)| < 1y then

update multipliers: y(k+t1) = (k) _ p, c(x(k+1))
else

increase penalty: pixi1 = 2pk

© Choose new (711, wk+1); set k + k+1

until (optimal solution found)

see e.g. (Conn, Gould & Toint:95) and (Friedlander, 2002)
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Augmented Lagrangian Methods (LANCELOT)

Advantage of Augmented Lagrangian Methods

@ Scalable computational kernels

Disadvantages of Augmented Lagrangian Methods
@ First-order method in multipliers = slow convergence
@ Arbitrary forcing sequences (wg, k) ... one fits all NLPs?
© Slow penalty update = slow for infeasible NLPs

Improving augmented Lagrangian methods:
© Add equality QP step for fast Newton-like convergence
@ Replace forcing sequence (wy, 7x) by filter
© Exploit structure for penalty estimates & use restoration phase

Goal: extend (Friedlander & L., 2008) from QP to NLP
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QOutline

© Augmented Lagrangian Filter Method
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Augmented Lagrangian Filter
Filter F to replace forcing sequences (w, 1k)

Definition (Augmented Lagrangian Filter)
o Filter F is a list of pairs (n(x),w(x,y)) where

w(x,y) = | min{x, ViLo(x, y) }l ... Lagrangian Lg
n(x) = |lc(x)]] ... constraint violation

such that no pair dominates another
o A point (x(K) y(kK)) acceptable to filter F iff

n(x¥) < B or w(x®,y¥) < fuy — yn(x¥), Vi€ F |

Typically: 5 =0.99, v =0.01
Approximate minimization of Lp(x,y(k)) until acceptable to filter
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Augmented Lagrangian Filter
Wy

n

o w(x,y) = [[min{x, ViLo(x,y)}|| and n(x) := [lc(x)]

h—
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Augmented Lagrangian Filter
Wy

n

o w(x,y) := || min{x, ViLo(x,y)}|| and n(x) := [[c(x)]|
e Automatic upper bound: U = [3/ywmax, because w >0
a - 11/27



Augmented Lagrangian Filter Method

while (x(9), y(K)Y not optimal do
j = 0; initialize XU = x(K), Wj = wk and N); = i
repeat
RU+1) « approximate argmin, - Ly, (x, yk)) from 2U)
if restoration switching condition then
Increase penalty: px11 = 2pk & switch to restoration
.. find acceptable (x(kt1), y(k+1)) and set k = k + 1
end
Provisionally update: yUtt) = y(k) — p.c(xUF1))
Compute (fj4+1,Dj4+1) and set j =j +1
until (7, ;) acceptable to Fy ;
Set (X(k+1)’y(k+1)) - (;((j),y,(j))
Get A+ = ;- xi(kH) = 0} & solve equality QP
if nk11 > 0 then add (?7;(+1,wk+1) toF ...setk=k+1
end
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.
Approximate Minimization of Augmented Lagrangian

Inner initialization: j = 0 and £(®) = x(¥)

For j =0,1,... terminate augmented Lagrangian minimization,

LU « approximate argmin L, (x,y())
x>0

when standard sufficient reduction holds:

ALy, =L, (R9), yy — [, (80D () > 65, > 0

E.g. Cauchy step on augmented Lagrangian for fixed p, and y(¥)

More natural than requiring reduction in F.O. error @; \, 0

a 13/27



Switching to Restoration

Goal: Infeasible NLPs = want to find mini>n(1)ize [c(x)]|3 fast!

Switch to restoration, min ||c(x)||, if o
Q@ 7); > BU ... infeasible, or
Q@ 7 > Mmin(1,&7), for 7 € [1,2]
.. infeasible Fritz-John point, or
Q || min(VcW)cl) 0| < e
and [[c9]| > Brjmin
.. infeasible FO Point, where

BU

TImin ‘= {2;1 {77/} >0 el

Lemma (Finite Return From Restoration) J

N 2 Nmin VI € Fx = 3 x(k+1) acceptable or restoration converges
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Second-Order Steps & KKT Solves

o x(kt1) mini>rr(1Jize L,(x,y"®) ... predicts A(x(<+1)

@ Accelerate convergence, by solving EQP with Axy = 0:

[E/kﬂ Ak—&-l} (AX1> _ —VfI(kH)
Al Ay ) 7\ —e(xtken)
where Hj1 is “reduced”’ Hessian wrt bounds (Ax4 = 0)

@ Line-search: a1 € {0} U [min, 1] such that

(xH ), y D) = (3D, D) oy (AxHD), Ay (kD)

Fy-acceptable
.. i1 = 0 OK, because (%(<*1) p(k+1)) was acceptable
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QOutline

@ Outline of Convergence Proof
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Augmented Lagrangian Filter Method

while (x(9), y(K)Y not optimal do
j = 0; initialize XU = x(K), Wj = wk and N); = i
repeat
RU+1) « approximate argmin, - Ly, (x, yk)) from 2U)
if restoration switching condition then
Increase penalty: px11 = 2pk & switch to restoration
.. find acceptable (x(kt1), y(k+1)) and set k = k + 1
end
Provisionally update: yUtt) = y(k) — p.c(xUF1))
Compute (fj4+1,Dj4+1) and set j =j +1
until (7, ;) acceptable to Fy ;
Set (X(k+1)’y(k+1)) - (;((j),y,(j))
Get A+ = ;- xi(kH) = 0} & solve equality QP
if nk11 > 0 then add (?7;(+1,wk+1) toF ...setk=k+1
end
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Overview of Convergence Proof

Assumptions
@ Functions f(x) and c(x) twice continuously differentiable

@ |lc(x)|| = oo whenever ||x|| — oo ... ignore EQP for analysis

Outline of Convergence Proof

@ Filter 7, = iterates, xk) remain in compact set
@ Inner iteration is finite = 3 convergent subsequence
© Mechanism of filter = limit points are feasible

@ Show limit points are stationary in two cases:

® Bounded penalty ... rely on filter
@ Unbounded penalty ... classical augmented Lagrangian

Do not assume compactness, or bounded multipliers!

Remark J
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Iterates Remain in Compact Set

Lemma (All Iterates Remain in Compact Set) J

All major and minor iterates, x¥) and £U) are in a compact set, C.

Proof. ®©

@ Upper bound on filter (U = 8/vywmax)
= |lc(x(k))|| < U for all major iterates
@ Switching condition (7); < BU)
= [lc(xU))|| < U for all minor iterates

© Feasibility restoration minimizes ||c(x)|| k u
= [|c(x(¥))|| bounded

= [le(M)] < U and [[c(D)]| < U

c(x) twice continuously differentiable & ||c(x)|| — oo if ||x]| = oo
= x(K), 2U) e C, compact
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Finiteness of Inner lteration

Lemma (Finiteness of Inner Iteration) J

The inner iteration is finite.

Proof. Assume inner iteration not finite = 3%* = limkU) € C

(O]

©Q Fixed penalty: px =p < 0
@ Sufficient reduction of L,(x, y(¥))

= AL, > o@j; assume @; > w0 >0

= L,(%0), y(9)) unbounded

... but [|c(£Y)]], p, and f(x) bounded
© Contradiction = @; — 0, and &, =0
@ Switching: 7; < M&@; = ), < M@,

= (s, w«) = (0,0) and 3 filter acceptable points near (0, 0)
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Feasible Limit Points

Lemma (Feasible Limit Points)

In outer iteration, feasibility error n, = ||c(x())|| — 0.

Proof. Two cases:
Q 7 =0,Vk > Kp ... of course!

Q@ 1, > 0, subsequence Vk > Kj
see (Chin & Fletcher, 2003)
.. envelope = nx — 0

.. standard filter argument

Oy
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First-Order Optimality

Lemma (First-Order Stationarity)

First-order optimality wy = || min{x(¥), VXL[()k)}H — 0.

Proof. (1) px < p < o0 and (2) px unbounded: classical proof

@ Assume wy > @ >0 & seek contradiction
= ALD = L5(xR), y R — 15(xkFD) y(K) > owy > 06 > 0

e First-order multiplier update, y(k+1) = (k) — 5¢(x(k+1)
AL = L) y9) — L))
= AL — plle(x*)13
> 0w — plle(x* )3

o Feasible limit: c(x(*™1)) — 0 = ||c(x(kT1))|3 < 02%, Vk > K
= ALg”t > a%, Vk > K outer iteration sufficient reduction
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First-Order Optimality (Proof cont.)

e Sufficient reduction at outer iterations: AL;—’”t > a%
= Ly(x,y) = F(x) — T c(x) + &llc(x)| unbounded
o x(K) € C compact = f(x) and ||c(x)||3 bounded

@ Show y " ¢(x) < M bounded:
o Feasibility Lemma = 1, = ||c(x())|| — 0
o Filter acceptance: Monotone sub-sequences 1, < Bnx—1
o FO multiplier update: y(¥) = y(©) — 55~ ()

(07 (0 ( PZ (/)) (k)
< <1+ﬁz77/> mw < Mo <5k+ﬁ2ﬂl+k> < M
/ i
e Contradiction: Lz(x,y) = f(x) =y c(x)+ §|lc(x)||3 bounded

= wk — 0 ... first-order stationarity
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@ Outlook and Conclusions
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Key Computational Kernels

O Filter stopping rule readily included in minimization of L,
° VLP()Q(jJrl)’y(k)) — VLO(;(UH),}A,(Hl)) = Qj41

@ Approximate minimization of augmented Lagrangian
e projected gradient plus CG on subspace

[Hic+ pAKAT ] 2 Bxz = =V L, (xH), y®)

o [Ac A (D) _ (= VL9, y0)
AkT—/fll u ) 0

© KKT system solve

o F/k Ak AXI .
AZ— Ay )=
o indefinite reduced Hessian = inertia control

= exploit scalable matrix-free solvers based on Hy, Ay
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Active Set Identification for QP blockgp4 100

Encouraging preliminary results with QP solver:

Standard Auglag Filter Auglag

Cauchy Active Sets (red=low, grn=up) Cauchy Active Sets (red=low, gm=up)

i
o % & 8 8 & & &8 & & §

red: lower bound active; green: upper bound active

... filter allows faster changes to A-set
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Conclusions & Open Questions

Augmented Lagrangian Filter:
@ augmented Lagrangian to identify optimal active set
o filter replaces forcing sequences in augmented Lagrangian
@ second-order step (EQP) for fast convergence
@ penalty update based on eigenvalue estimates of KKT matrix

. outline of convergence proof to first-order points

Future Work & Open Questions
@ implementation, preconditioners, and numerical experiments
@ matrix-free parallel version using TAO & PETSc
@ Active-set identification & second-order convergence
°

adaptive precision control (Dostal, 2002)
& filter with single entry: F = {(M||c(xx)||,0)}
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